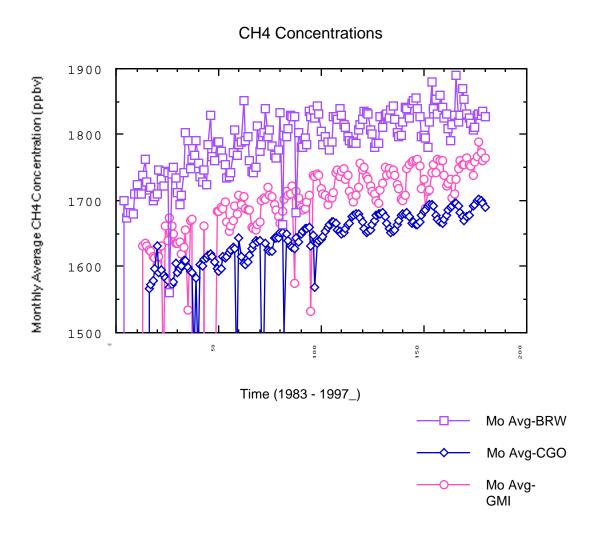
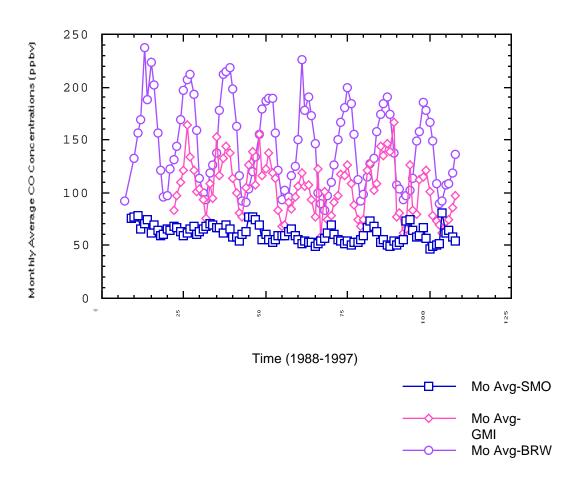
## Interactions between CO, OH, and CH4: Global Warming Potentials for CO


Joyce E. Penner<sup>1</sup>, Allen Grossman<sup>2</sup>, Jane Dignon<sup>2</sup> and John J. Walton<sup>1</sup>

<sup>1</sup>Department of Atmospheric, Oceanic and Space Sciences, University of Michigan <sup>2</sup>Lawrence Livermore National Laboratory


### **Objective:**

To develop an understanding of the effects of CH<sub>4</sub>, CO, and NMVOC emissions on OH, and feedbacks between OH, CH<sub>4</sub>, and CO in order to more accurately determine emissions of these gases as well as Global Warming Potentials.

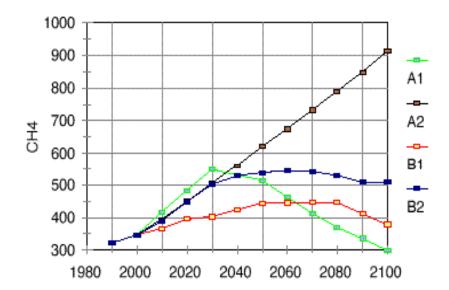
## CH4 is a potent greenhouse gas, and its concentrations are increase



## CO concentrations are also changing:



## The sources of CH<sub>4</sub> are highly uncertain(Fung et al., 1991):


| Source Type:                 | Source Strength (Tg/yr) | Uncertainty range |  |
|------------------------------|-------------------------|-------------------|--|
| Wetlands                     | 110                     | 100-200           |  |
| Bogs                         | 30                      |                   |  |
| Swamps                       | 40                      | 100-200           |  |
| Tundra                       | 5                       |                   |  |
| Rice cultivation             | 50                      | 60-170            |  |
| Animals                      | 80                      | 65-100            |  |
| Landfills                    | 50                      | 30-70             |  |
| Venting of natural gas       | 50                      |                   |  |
| Pipeline leakage             | 50                      | 25-50             |  |
| Coal mining                  | 50                      | 25-45             |  |
| Biomass burning              | 50                      | 50-100            |  |
| Termites                     | 50                      | 10-200            |  |
| Hydrate/clathrate,<br>Soviet | 10                      | ?                 |  |
| Hydrate/clathrate,zona<br>I  | 10                      | ?                 |  |

## Sources of CO are also poorly quantified:

| Source Type:                     | Source Strength<br>(Tg/yr) | Reference                     |
|----------------------------------|----------------------------|-------------------------------|
| Fossil fuel                      | 525+/-100                  | Penner and Eddleman<br>(1995) |
| Biomass burning                  | 450+/-?                    | Liousse et al. (1996)         |
| Ocean                            | 16.5+/- 10                 |                               |
| Additional winter biomass source | 380                        | Dignon et al. (1997)          |
| Oxidation of isoprene            | 587+/-200                  | Guenther et al. (1995)        |
| Plant emissions                  | 100+/-50                   |                               |
| Soils                            | 17+/-15                    |                               |
| Oxidation of CH <sub>4</sub>     |                            | Model simulation              |

## In the future, concentrations of both CH4 and CO may incr

### CH4 and CO emissions (Tg CH4/yr) (IPCC, 1999)



#### OH concentrations depend on H2O, O3, NO<sub>X</sub>, CO, CH4 and NMOCs:

#### Main sources of OH:

O3 + hv 
$$\rightarrow$$
 O2 + O( $^{1}$ D)  
O( $^{1}$ D) + H2O  $\rightarrow$  2OH  
HO2 + NO  $\rightarrow$  OH + NO2

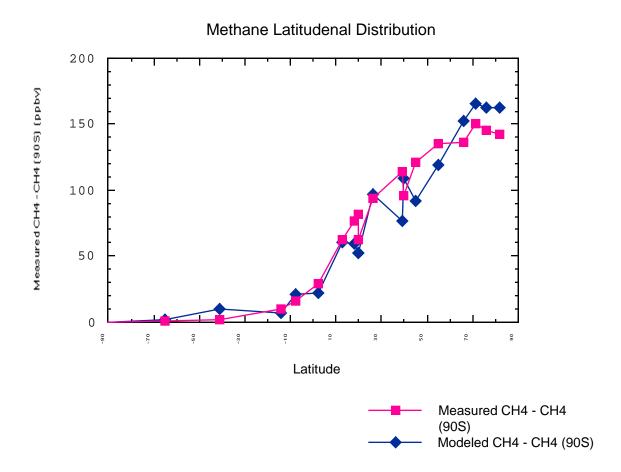
#### Main sinks of OH:

OH + CO 
$$\rightarrow$$
 CO<sub>2</sub> + H  
OH + CH4  $\rightarrow$  CO + products  
OH + C5H6  $\rightarrow$  2.5CO + products  
O3 + OH  $\rightarrow$  HO<sub>2</sub> + O<sub>2</sub>  
OH + H<sub>2</sub>O<sub>2</sub>  $\rightarrow$  HO<sub>2</sub> + H<sub>2</sub>O  
OH + HO<sub>2</sub> $\rightarrow$  H<sub>2</sub>O + O<sub>2</sub>  
OH + NO<sub>2</sub> $\rightarrow$  HNO<sub>3</sub>

The reaction of OH with CO accounts for most of the OH sink. Therefore, if CO concentrations increase, OH may decrease, causing increases in CH<sub>4</sub>.

# To evaluate the potential for CO emissions to affect CH<sub>4</sub>, the system was simplified to:

$$d[CH4]/dt = SCH4 - k1 [OH] [CH4]$$
 
$$d[CO]/dt = SCO + k1 [OH] [CH4] - k2 [OH] [CO] - d[CO]/dt_{soil}$$
 
$$uptake$$
 
$$d[OH]/dt = SOH - k1 [OH] [CH4] - k2 [OH] [CO] - k3 [OH] [X],$$


where k3[X] accounts for the sum of all the reactions for OH sinks that are independent of the CH4-CO system, SOH accounts for all reactions which are sources for OH. k3[X] and SOH were diagnosed from a version of GRANTOUR that solves the full system of equations and, this 3-species model was solved using GRANTOUR with the CO and CH<sub>4</sub> source terms described in Tables 1 and 2. Additionally, in some simulations the feedback reaction of HO<sub>2</sub> with NO was included.

## Results:

| Average           | OH from C | H₃CCI₃ an | alysis (Pr | inn et al., | 1995) (1x10 <sup>-5</sup> cm <sup>-3</sup> ) |
|-------------------|-----------|-----------|------------|-------------|----------------------------------------------|
|                   | 90S - 30S | 30 S - 0  | 0 - 30N    | 30N - 90N   | _                                            |
| 205-<br>500<br>mb | 6.4       | 15.8      | 13.7       | 5.7         |                                              |
| 500-1000<br>mb    | 5.5       | 15.9      | 12.2       | 4.3         |                                              |

| Average OH from model (no NMHC reactions) (1x10 <sup>-5</sup> cm <sup>-3</sup> ) |           |          |         |           |
|----------------------------------------------------------------------------------|-----------|----------|---------|-----------|
|                                                                                  | 90S - 30S | 30 S - 0 | 0 – 30N | 30N – 90N |
| 205-<br>500<br>mb                                                                | 7.6       | 18.6     | 19.1    | 9.7       |
| 500-1000<br>mb                                                                   | 7.8       | 18.4     | 19.6    | 12.4      |

## Latitudenal distribution of CH4:



The global warming potential of a gas is defined as:

$$GWP(c_i) = \frac{\int\limits_0^{} a_i c_i(t) dt}{\int\limits_0^{} a_{CO_2} c_{CO_2}(t) dt}$$

where  $a_i$  is the instantaneous radiative forcing (per unit mass) due to a unit increase in the concentration of trace gas i, and  $c_i$  is the concentration of the trace gas i remaining at time t after an initial impulse of that gas. The global warming potential is normalized by the radiative forcing caused by an increase of  $CO_2$ .

## **Global warming potential:**

Direct global warming potentials for methane for time horizons of 20, 100 and 500 years.

| Case                                  | 20    | 100   | 500   |
|---------------------------------------|-------|-------|-------|
|                                       | years | years | years |
| CH <sub>4</sub> Impulse<br>Direct GWP | 44.3  | 17.05 | 5.16  |

Global Warming Potentials for CO perturbations of CH4.

| Case                             | 20 years | 100<br>years | 500<br>years |
|----------------------------------|----------|--------------|--------------|
| Global CO<br>Impulse             | 3.2      | 1.2          | 0.4          |
| Including<br>HO <sub>2</sub> +NO | 2.4      | 0.9          | 0.3          |

#### **Conclusions and future work:**

With this simple model, OH concentrations appear to be too high relative to those expected from analysis of CH<sub>3</sub>CCl<sub>3</sub> trends.

Additionally, the ratio:

 $\frac{[OH]_{NH}}{[OH]_{SH}}$ 

is 1.2, while the analysis of Prinn et al., indicates a value of 0.8, which is also consistent with analysis based on <sup>14</sup>CO (Brenninkmeijer et al. (1992).

As a result CO and CH<sub>4</sub> concentrations are underpredicted.

Future versions of the model will examine the impact of NMOC emissions on OH, CO, and CH<sub>4</sub>.

This should provide us with a better method for quantifying the effects of CO on CH<sub>4</sub> concentration and global warming potential.